Answer :

We are given the Indefinite integral ;

[tex]{:\implies \quad \displaystyle \sf \int \dfrac{dx}{x-x^{3}}}[/tex]

Take x common from denominator ;

[tex]{:\implies \quad \displaystyle \sf \int \dfrac{dx}{x(1-x^{2})}}[/tex]

Now , Put ;

[tex]{:\implies \quad \displaystyle \sf x^{2}=u}[/tex]

So that ;

[tex]{:\implies \quad \displaystyle \sf dx=\dfrac{du}{2\sqrt{u}}\quad and\quad x=\sqrt{u}}[/tex]

Now , putting the values ;

[tex]{:\implies \quad \displaystyle \sf \int \dfrac{1}{\sqrt{u}(1-u)}\times \dfrac{1}{2}\times \dfrac{du}{\sqrt{u}}}[/tex]

Now , as constant can be taken out of the integrand, so now ;

[tex]{:\implies \quad \displaystyle \sf \dfrac{1}{2}\int \dfrac{du}{u(1-u)}}[/tex]

Using partial fraction decomposition, Rewrite the integral as ;

[tex]{:\implies \quad \displaystyle \sf \dfrac{1}{2}\int \left(\dfrac{1}{u}+\dfrac{1}{1-u}\right)du}[/tex]

As Integrals follow distributive property, so breaking the integral into two integrals, and continuing the integration

[tex]{:\implies \quad \displaystyle \sf \dfrac{1}{2}\left(\int \dfrac{1}{u}du+\int \dfrac{1}{1-u}du\right)}[/tex]

[tex]{:\implies \quad \displaystyle \sf \dfrac{1}{2}\bigg\{log|u|+\dfrac{log|1-u|}{(-1)}\bigg\}+C}[/tex]

[tex]{:\implies \quad \displaystyle \sf \dfrac{1}{2}(log|u|-log|1-u|)+C}[/tex]

[tex]{:\implies \quad \displaystyle \sf \dfrac{1}{2}log\bigg|\dfrac{u}{1-u}\bigg| +C}[/tex]

Putting value of u ;

[tex]{:\implies \quad \therefore \quad \underline{\underline{\displaystyle \bf \int \dfrac{dx}{x-x^{3}}=\dfrac{1}{2}log\bigg|\dfrac{x^2}{1-x^{2}}\bigg| +C}}}[/tex]

This is the required answer

Used Concepts :-

  • [tex]{\boxed{\displaystyle \bf \int \dfrac{1}{x}dx=log|x|+C}}[/tex]

  • [tex]{\boxed{\bf{log(a)-log(b)=log\left(\dfrac{a}{b}\right)}}}[/tex]

Other Questions