Answer :

Answer:

20 degree

Step-by-step explanation:

angle sum of triangle

180-112-48

WindyMint

There are two ways , so the first part reference to method 1 and and second part reference to method 2.

[tex] \\ [/tex]

PART 1 :-

[tex] \\ \\ [/tex]

[tex] \tt In~\triangle ABC: [/tex]

[tex] \\ [/tex]

[tex] \tt \angle A + \angle B + \angle C = 180 {}^{ \circ} [/tex]

{sum of triangle}

[tex] \\ \\ [/tex]

here we can find value of angle C.

[tex] \\ [/tex]

[tex] \dashrightarrow \sf\angle A + \angle B + \angle C = 180 {}^{ \circ} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf112 + 48 + \angle C = 180 {}^{ \circ} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf160 + \angle C = 180 {}^{ \circ} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf\angle C = 180 {}^{ \circ} - 160 {}^{ \circ} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf\angle C =20^{ \circ} \\ [/tex]

[tex] \\ \\ [/tex]

angle c is congruent to angle f

.°. y = 20°

[tex] \\ \\ [/tex]

PART 2:-

[tex] \\ \\ [/tex]

angle a = angle d

.°. value of x = 112°

[tex] \\ \\ [/tex]

[tex] \tt \angle E + \angle D + \angle F = 180 {}^{ \circ} [/tex]

[tex] \\ \\ [/tex]

ve can find value of y :-

[tex] \\ [/tex]

[tex] \dashrightarrow \sf x + 48 + y= 180 {}^{ \circ} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf112 + 48 +y = 180 {}^{ \circ} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf160+y= 180 {}^{ \circ} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \sf y= 180 {}^{ \circ} - 160 {}^{ \circ} \\ [/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow \bf y=20^{ \circ} \\ [/tex]

Other Questions