The image above shows two congruent triangles. What is the measure of angle y?

Answer:
20 degree
Step-by-step explanation:
angle sum of triangle
180-112-48
There are two ways , so the first part reference to method 1 and and second part reference to method 2.
[tex] \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \tt In~\triangle ABC: [/tex]
[tex] \\ [/tex]
[tex] \tt \angle A + \angle B + \angle C = 180 {}^{ \circ} [/tex]
{sum of triangle}
[tex] \\ \\ [/tex]
here we can find value of angle C.
[tex] \\ [/tex]
[tex] \dashrightarrow \sf\angle A + \angle B + \angle C = 180 {}^{ \circ} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \sf112 + 48 + \angle C = 180 {}^{ \circ} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \sf160 + \angle C = 180 {}^{ \circ} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \sf\angle C = 180 {}^{ \circ} - 160 {}^{ \circ} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \sf\angle C =20^{ \circ} \\ [/tex]
[tex] \\ \\ [/tex]
angle c is congruent to angle f
.°. y = 20°
[tex] \\ \\ [/tex]
[tex] \\ \\ [/tex]
angle a = angle d
.°. value of x = 112°
[tex] \\ \\ [/tex]
[tex] \tt \angle E + \angle D + \angle F = 180 {}^{ \circ} [/tex]
[tex] \\ \\ [/tex]
ve can find value of y :-
[tex] \\ [/tex]
[tex] \dashrightarrow \sf x + 48 + y= 180 {}^{ \circ} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \sf112 + 48 +y = 180 {}^{ \circ} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \sf160+y= 180 {}^{ \circ} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \sf y= 180 {}^{ \circ} - 160 {}^{ \circ} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow \bf y=20^{ \circ} \\ [/tex]