Let AB be the directed line segment beginning at point A(0,4) and ending at point B(9,8). Find the point P on the line segment that partitions the line segment into the segments AP and PB at a ratio of 1:2.

Answer :

(3, ~1.3), The Y coordinate is rough
${teks-lihat-gambar} u8j9

Answer:

[tex](3,\frac{16}{3})[/tex]

Step-by-step explanation:

When a line segment with the end points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is divided by a point in the line segment in the ratio m : n,

Then the coordinates of this point are,

[tex](\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n})[/tex]

Thus, the coordinates of point P that divides a line segment having end points [tex]A(0,4)[/tex] and [tex]B(9,8)[/tex] in the ratio of 1 : 2,

[tex](\frac{1\times 9+2\times 0}{1+2},\frac{1\times 8+2\times 4}{1+2})[/tex]

[tex](\frac{9}{3},\frac{16}{3})[/tex]

[tex](3,\frac{16}{3})[/tex]