Answer :
(a) The surface charge density in the sphere of radius 7.4 is 0.0322 C/m³.
(b) The surface density on the 2nd sphere is 3.48 x 10⁻⁴ C/m³.
Total charge of the spheres
F = kq₁q₂/r²
Fr² = kq₁q₂
q₁q₂ = Fr²/k
where;
- r is distance between the charges
- k is Coulomb's constant
q₁q₂ = (0.62 x 0.38²) / (9 x 10⁹)
q₁q₂ = 9.95 x 10⁻¹² C
q₂ = 9.95 x 10⁻¹² C/q₁
From the question;
q₁ + q₂ = 55 x 10⁻⁶
q₁ + 9.95 x 10⁻¹² /q₁ = 55 x 10⁻⁶
q₁² + 9.95 x 10⁻¹² = 55 x 10⁻⁶q₁
q₁² - 55 x 10⁻⁶q₁ + 9.95 x 10⁻¹² = 0
solve the quadratic equation using formula method;
q₁ = 5.48 x 10⁻⁵ C
q₂ = 55 x 10⁻⁶ C - 5.48 x 10⁻⁵ = 1.82 x 10⁻⁷ C
Volume of the first sphere
V1 = ⁴/₃πr³
V1 = (⁴/₃ π)(0.074)³ = 1.7 x 10⁻³ m³
Surface charge density = (5.48 x 10⁻⁵ C) / (1.7 x 10⁻³ m³) = 0.0322 C/m³
Volume of the second sphere
V2 = (⁴/₃ π)(0.05)³ = 5.236 x 10⁻⁴ m³
Surface charge density = ( 1.82 x 10⁻⁷ C) / (5.236 x 10⁻⁴ m³) = 3.48 x 10⁻⁴ C/m³
Thus, the surface charge density in the sphere of radius 7.4 is 0.0322 C/m³.
The surface density on the 2nd sphere is 3.48 x 10⁻⁴ C/m³.
Learn more about surface density here: https://brainly.com/question/14306160
#SPJ1