Answer :
Step 1
State the volume of a hemisphere.
[tex]v=\frac{2}{3}\pi r^3[/tex]Where;
[tex]\begin{gathered} r=\frac{diameter}{2}=\frac{10}{2}=5ft \\ \end{gathered}[/tex]Step 2
Find the volume of the hemisphere
[tex]v=\frac{2}{3}\times\pi\times5^3=\frac{250\pi}{3}ft^3[/tex]Step 3
Find the total weight of the liquid in the tank
[tex]\begin{gathered} \text{Density}=\frac{mass}{\text{volume}} \\ 74.4=\frac{mass}{\frac{250\pi}{3}} \\ \text{mass}=19477.87445lb \\ \text{mass}\approx19478lb \end{gathered}[/tex]Hence the total weight of the liquid in the tank to the nearest full pound = 19478lb