A tank in the shape of a hemisphere has a diameter of 10 feet. If the liquid that fills the tank has a density of 74.4 pounds per cubic foot, what is the total weight of the liquid in the tank, to the nearest full pound?

Answer :

Step 1

State the volume of a hemisphere.

[tex]v=\frac{2}{3}\pi r^3[/tex]

Where;

[tex]\begin{gathered} r=\frac{diameter}{2}=\frac{10}{2}=5ft \\ \end{gathered}[/tex]

Step 2

Find the volume of the hemisphere

[tex]v=\frac{2}{3}\times\pi\times5^3=\frac{250\pi}{3}ft^3[/tex]

Step 3

Find the total weight of the liquid in the tank

[tex]\begin{gathered} \text{Density}=\frac{mass}{\text{volume}} \\ 74.4=\frac{mass}{\frac{250\pi}{3}} \\ \text{mass}=19477.87445lb \\ \text{mass}\approx19478lb \end{gathered}[/tex]

Hence the total weight of the liquid in the tank to the nearest full pound = 19478lb

Other Questions