Answer :

Given the following points that pass through the line:

Point A : 12,4

Point B : 22,9

Step 1: Let's determine the slope of the line (m).

[tex]\text{ m = }\frac{y_2-y_1}{x_2-x_1}[/tex][tex]\text{ = }\frac{9\text{ - 4}}{22\text{ - 12}}[/tex][tex]\text{ m = }\frac{5}{10}\text{ = }\frac{1}{2}[/tex]

Step 2: Let's determine the y-intercept (b). Substitute m = 1/2 and x,y = 12,4 in y = mx + b.

[tex]\text{ y = mx + b}[/tex][tex]\text{ 4 = (}\frac{1}{2})(12)\text{ + b }\rightarrow\text{ 4 = }\frac{12}{2}\text{ + b}[/tex][tex]\text{ 4 = 6 + b}[/tex][tex]4\text{ - 6 = b}[/tex][tex]\text{ -2 = b}[/tex]

Step 3: Let's complete the equation. Substitute m = 1/2 and b = -2 in y = mx + b.

[tex]\text{ y = mx + b}[/tex][tex]\text{ y = (}\frac{1}{2})x\text{ + (-2)}[/tex][tex]\text{ y = }\frac{1}{2}x\text{ - 2}[/tex]

Therefore, the equation of the line is y = 1/2x - 2.