Answer :

The length and area of a circular sector of radius r and angle a are given by:

[tex]\begin{gathered} S=2\pi r\cdot\frac{a}{360^{\circ}}, \\ A=\pi r^2\cdot\frac{a}{360^{\circ}}\text{.} \end{gathered}[/tex]

In this problem we have:

• a = 50°,

,

• r = 30 cm.

Replacing these values in the formulas above, we get:

[tex]\begin{gathered} S=2\pi\cdot(30\operatorname{cm})\cdot\frac{50^{\circ}}{360^{\circ}}\cong26.1799\operatorname{cm}\cong26\operatorname{cm}, \\ A=\pi\cdot(30\operatorname{cm})^2\cdot\frac{50^{\circ}}{360^{\circ}}\cong392.699cm^2\cong393cm^2\text{.} \end{gathered}[/tex]

Answers

• S = length = 26cm,

,

• A = area = 393cm².

Other Questions