Answer :

The coordinates of trinagle ABC is :

A(2, 1), B(-1, 3), C(-3,-2)

and the coordinates of triangle A'B'C'

A'(4,2) B'(-2,6), C'(-6,-4)

For the dialation, find the constant ratio:

Divide A'/A :

[tex]\begin{gathered} \frac{A^{\prime}}{A}=\frac{(4,2)}{(2,1)} \\ \text{ The ratio of coordinates of A' to A is 2} \\ i\mathrm{}e\text{. A'=2(A)} \end{gathered}[/tex]

Now, for the coordinates B,

[tex]\begin{gathered} \frac{B^{\prime}}{B}=\frac{(-2,6)}{(-1,3)} \\ \text{ the ratio of coordinates of B' to B is 2} \\ i\mathrm{}e\text{. B'=2B} \end{gathered}[/tex]

Now, for the coordinate C:

[tex]\begin{gathered} \frac{C^{\prime}}{C}=\frac{(-6,-4)}{(-3,-2)} \\ \text{the ratio of coordinates of C' to C is 2} \\ i\mathrm{}e\text{. C' =2C} \end{gathered}[/tex]

thus, the scale factor of dialation is 2

Answer : scale Factor = 2

Other Questions