Answer :

Given:

(a)

(b)

Find-:

Check for linear, quadratic and exponential.

Explanation-:

Check for linear at the change in x and change of y is same.

(a)

Change of x and y

[tex]\begin{gathered} \Delta x=5-4 \\ \\ =1 \\ \\ \Delta y=48-96 \\ \\ =-48 \end{gathered}[/tex]

Change of x and y is:

[tex]\begin{gathered} \Delta x=6-5 \\ \\ =1 \\ \\ \Delta y=24-48 \\ \\ =-24 \end{gathered}[/tex]

So it is not a linear function

For exponential function: ratio is same for common difference

[tex]\begin{gathered} \text{ ratio}=\frac{96}{48} \\ \\ =2 \end{gathered}[/tex]

For the second point

[tex]\begin{gathered} \text{ Ratio=}\frac{48}{24} \\ \\ =2 \end{gathered}[/tex]

For the third point.

[tex]\begin{gathered} \text{ Ratio }=\frac{24}{12} \\ \\ =2 \end{gathered}[/tex]

The ratio same so it is an exponential function.

(b)

The change in x and y is:

[tex]\begin{gathered} \Delta x=-2-(-1) \\ \\ =-1 \\ \\ \Delta y=-8-2 \\ \\ =10 \end{gathered}[/tex]

Check

[tex]\begin{gathered} \Delta x=-1-(0) \\ \\ =-1 \\ \\ \Delta y=2-8 \\ \\ =-6 \end{gathered}[/tex]

So it is not a linear function.

For exponential function.

[tex]\begin{gathered} \text{ Ratio=}\frac{-8}{2} \\ \\ =-4 \end{gathered}[/tex]

Check for another point,

[tex]\begin{gathered} \text{ Ratio =}\frac{2}{8} \\ \\ =\frac{1}{4} \end{gathered}[/tex]

So it is not a exponential function.

Check for quadratic function-:

If the double change of y is same so it is a quadratic function.,

So double difference is -4 for each point so it is a quadratic function.

${teks-lihat-gambar} LeiannX763272
${teks-lihat-gambar} LeiannX763272
${teks-lihat-gambar} LeiannX763272

Other Questions