Answer :

Answer:

94.7925 square inches

Explanations:

The given figure is made up of a triangle and a semicircle. The area of the figure is expressed as:

[tex]Area=area\text{ }of\text{ }triangle+area\text{ }of\text{ }semicircle[/tex]

Find the area of the triangle

Base = 14in

Height = 9in

[tex]\begin{gathered} A_t=\frac{1}{2}\times base\times height \\ A_t=\frac{1}{2}\times14\times9 \\ A_t=7\times9=63in^2 \end{gathered}[/tex]

Determine the area of the semicircle

Radius = 9in/2 = 4.5in

[tex]\begin{gathered} A_s=\frac{\pi r^2}{2} \\ A_s=\frac{3.14\times4.5^2}{2} \\ A_s=\frac{63.585}{2} \\ A_s=31.7925in^2 \end{gathered}[/tex]

Determine the area of the figure

[tex]\begin{gathered} A=A_t+A_s \\ A=63+31.7925 \\ A=94.7925in^2 \end{gathered}[/tex]

Thereforethe area of the shape is 94.7925 square inches