Answer :

Answer:

Value of x=8

Step-by-step explanation:

Given : [tex]log_2x+log_2(x-6)=4[/tex]          

To find : The solution to the equation given

Solution :

Step 1- Write the given expression

[tex]log_2x+log_2(x-6)=4[/tex]  

Step 2 - Using logarithmic laws

[tex]log_{b}x+log_by=log_bxy[/tex]

[tex]log_2(x)(x-6)=4[/tex]  

Step 3 - To remove log-base 2, we need to raise the left and right hand terms to power 2.

[tex](x)(x-6)=2^4[/tex]  

[tex]x^2-6x-16=0[/tex]  

Step 4 - Solve the quadratic equation

[tex]x^2-8x+2x-16=0[/tex]  

[tex]x(x-8)+2(x-8)=0[/tex]  

[tex](x-8)(x+2)=0[/tex]  

Either x=8 or x=-2

We neglect x=-2 because negative value is not defined in log.

Value of x=8

Answer:

solution to the equation is 8

Step-by-step explanation:

Other Questions