Answer :
let y = 12 e^2x
e^2x = y/12
Taking logs@
ln e^2x = ln (y/12)
2x = ln (y/12)
x = (1/2) ln (y / 12)
so the inverse h-1(x) = (1/2) ln ( x / 12)
e^2x = y/12
Taking logs@
ln e^2x = ln (y/12)
2x = ln (y/12)
x = (1/2) ln (y / 12)
so the inverse h-1(x) = (1/2) ln ( x / 12)