Answer :
check the picture below, the maximum height occurs at the vertex
now [tex]\bf \begin{array}{lccclll} h=&-16t^2&+80t&+2016\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right)[/tex]
so the maximum height is [tex]\bf {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\quad feet[/tex]
now [tex]\bf \begin{array}{lccclll} h=&-16t^2&+80t&+2016\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right)[/tex]
so the maximum height is [tex]\bf {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\quad feet[/tex]
