Answer :

To rewrite the equation y=(x+2)^3+4 without parentheses, we can apply the exponent to each term inside the parentheses and then simplify.

Step 1: Expand the cube power inside the parentheses.

(x+2)^3 = (x+2)(x+2)(x+2) = x(x+2)(x+2) + 2(x+2)(x+2) = x(x^2+4x+4) + 2(x^2+4x+4)

Step 2: Distribute the terms.

= x(x^2+4x+4) + 2(x^2+4x+4) = x^3 + 4x^2 + 4x + 2x^2 + 8x + 8

Step 3: Combine like terms.

= x^3 + (4x^2 + 2x^2) + (4x + 8x) + 8 = x^3 + 6x^2 + 12x + 8

Step 4: Add 4 to the result.

y = x^3 + 6x^2 + 12x + 8 + 4 = x^3 + 6x^2 + 12x + 12

Therefore, the equation y=(x+2)^3+4 without parentheses is y = x^3 + 6x^2 + 12x + 12.

Other Questions