Answer :
For the "system" to function, we require that [tex]C\cup D[/tex] occurs (i.e. the event that either [tex]C[/tex] or [tex]D[/tex] function properly). This occurs with probability
[tex]\mathbb P(C\cup D)=\mathbb P(C)+\mathbb P(D)-\mathbb P(C\cap D)[/tex]
but since [tex]C[/tex] and [tex]D[/tex] are independent,
[tex]\mathbb P(C\cup D)=\mathbb P(C)+\mathbb P(D)-\mathbb P(C)\mathbb P(D)[/tex]
We're given that [tex]\mathbb P(C^C)=0.08[/tex] and [tex]\mathbb P(D^C)=0.12[/tex], so
[tex]\mathbb P(C\cup D)=(1-0.08)+(1-0.12)-(1-0.08)(1-0.12)=0.9904[/tex]
If [tex]\mathbb P(C^C)=\mathbb P(D^C)=p[/tex], then
[tex]\mathbb P(C\cup D)=(1-p)+(1-p)-(1-p)^2=1-p^2[/tex]
[tex]\mathbb P(C\cup D)=\mathbb P(C)+\mathbb P(D)-\mathbb P(C\cap D)[/tex]
but since [tex]C[/tex] and [tex]D[/tex] are independent,
[tex]\mathbb P(C\cup D)=\mathbb P(C)+\mathbb P(D)-\mathbb P(C)\mathbb P(D)[/tex]
We're given that [tex]\mathbb P(C^C)=0.08[/tex] and [tex]\mathbb P(D^C)=0.12[/tex], so
[tex]\mathbb P(C\cup D)=(1-0.08)+(1-0.12)-(1-0.08)(1-0.12)=0.9904[/tex]
If [tex]\mathbb P(C^C)=\mathbb P(D^C)=p[/tex], then
[tex]\mathbb P(C\cup D)=(1-p)+(1-p)-(1-p)^2=1-p^2[/tex]